ACCESS AND EFFICIENCY CLUSTER

Cost and Consequences of Poor Care Access
PROJECT 02-05161.NEU

Value Proposition:
- Develop a methodology to better define timely access to care and quantify its consequences
- Construct documentation and analysis of access issues and consequences for each specialty
- Develop standardized measures and evaluation of alternate approaches

Description:
This project responds to the recent Institute of Medicine Access to Care report and aims to develop a methodology to better understand, define, and quantify poor access to care and its consequences on cost, flow, and patient health. Delays in access to healthcare and extended wait times have been shown to be associated with multiple consequences, including but not limited to poorer health outcomes, financial burden from seeking non-network care, higher rates of appointment no-shows, unnecessary emergency department visits, frustration, inconvenience, and dissatisfaction with the healthcare system. While preventing delays and reducing wait times are particularly critical for many health services, to improve or optimize access by any method requires understanding what defines bad access and how to quantify its consequences. The purpose of this project is to design and to conduct an analytic study of consequences of delayed care in multiple settings starting with three pilot specialties—dermatology (melanoma), mental health, and neurology.

How this is different than related research:
While it is well established that delays in access to care have multiple causes and consequences, including negative effects on health outcomes, patient satisfaction, healthcare utilization, costs, and organizational reputation, very little scientific evidence exists on what defines bad/poor access and how to quantify its impact on cost, flow, and health consequences. This project aims to take a systematic approach and develop approaches to better understand, define, and quantify access to healthcare and its consequences in various settings, initially focusing on three different specialties. This also includes research to apply and evaluate statistical modeling and quality engineering methods.